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Monte Carlo simulation of a planar Ising model roughening 
transition 
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Abstract. We report Monte Carlo simulations of a 65 x 65 planar square king model with 
boundary conditions chosen to allow examination of the roughening transition recently 
described by Abraham. Magnetisation profiles in excellent agreement with the known exact 
result were obtained. Equilibrium spin pair correlation functions are described: those 
across the interface which is established show anomalously long-ranged effects. The spin 
autocorrelation functions show anomalously slow decay. 

1. Introduction 

The interface between two coexisting pure phases in fluids, binary mixtures and uniaxial 
ferromagnets has been the subject of much recent scrutiny. There has been a remark- 
ably successful phenomenological theory due to van der Waals (1894), culminating in 
the work of Widom and his collaborators (Fisk and Widom 1969). This is based on an 
assumed free energy density functional of the density profile established in an inhomo- 
geneous system. The total free energy is then minimised by calculus of variations to 
obtain the equilibrium profile, which is found to vary on the scale of the correlation 
length 5 for a pure phase. The notion that the characteristic lerlgth is in fact 6 led 
Widom to the first scaling law for critical exponents (Widom 1965). 

Statistical mechanical theories at atomic dimensions make suggestions which 
modify the free energy density theory at a fundamental level. But such theories are far 
from complete. For instance, there is not even a generul proof of existence of phase 
transitions (Ruelle 1971) for continuous systems. On the other hand, lattice gases have 
two advantages: firstly, mutatis mutandis the same theory treats gases, uniaxial 
ferromagnets and binary mixtures and alloys. Secondly, there are many mathematically 
exact results. Provided the correlation length 6 is large on the scale of the interaction 
range, assumed finite, we may expect the lattice gas theory to be essentially exact for 
continuous systems. We now continue with a rCsumC of relevant exact results for lattice 
systems. 

Imagine a cubical volume V to be divided up into small cells of size a. At the centre 
of each cell, labelled i, there is a spin a ( i )  = *l. The cubical lattice formed by the centre 
points i is denoted A. A spin configuration, denoted {a}, on A has an energy 

i # j  

t On leave from Oxford University. 
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where J ( i ,  j )  (SO) is a ferromagnetic coupling. This coupling is zero unless i and j are 
nearest neighbours, when J ( i ,  j )  = J. Equation (1) also contains a magnetic field H ( i ) .  
The probability of such a configuration is 

 PA({^)) = 2,' exp[-~~A({c+))I (2) 
where Za is the canonical partition function which normalises ( 2 )  and P = l / k T  is the 
usual notation. 

The first key result is that if we take a cubical region A centred on the origin and 
surrounded by spins all constrained to be +1, then provided the dimension d 2 2, there 
exists T,(d) such that for O <  T < T,(d)  and for H ( i )  = 0 

lim (a(O)),,,+ = m* 
A-tm 

( 3 )  

with m*>O. The average ( )A,+ is taken with respect to ( 2 )  with the constraint 
a(i)  = +l outside A. If the constraint is reversed then m* carries afactor -1 in (3) .  This 
result, due to Peierls (1936) and improved by Dobrushin (1968) and Griffiths (1964),  
shows that these models are unstable with respect to boundary conditions at low enough 
temperatures. This view of a phase transition complements the usual one in terms of the 
free energy. The mechanism of proof is illuminating. Unit line segments for d = 2 (unit 
squares for d = 3 )  are drawn between all neighbouring pairs of spins having opposite 
sign. We thus obtain contours which are edge self-avoiding and cannot terminate inside 
A; at intersections only 0, 2 or 4 line segments may meet. When the boundary 
conditions + or - are imposed, no contours intersect the boundary of A. For d = 3 the 
contours are closed polygonal sheets. Let the area (volume for d = 3 )  of A be denoted 
1111. The contours are treated perturbatively to show that the total area contained within 
contours grows as \AI, but the proportionality can be made as small as desired by taking 
T small enough. Also, the total length of any contour is smaller than lnlAl with 
probability one. Thus we capture the idea of small contours of reversed magnetisation 
disordering a pure phase. 

This result may be generalised as follows: consider collections of points A which 
have finite diameter on the lattice and let 

Then no matter what the boundary conditions on A are, if we consider those (a(A))  
which are translationally invariant on A as A + CO, there exists A E [0, 11 such that 

lim (a(A))A= ~ ( a ( A ) ) + + ( l  --A)(a(A))- ( 5 )  
A-CC 

where (a(A)),  is the infinite volume limit with either + or - boundary conditions. The 
same A obtains for all A. This result interprets the disproportionation along the tie lines 
but it tells us little of the typical geometric relations between phases. 

It is natural to investigate this problem by taking boundary conditions on a box 
A = { ( x ) ~ - ~ ,  zl-N+ 11 s z  s N ,  - M S x j  S M ,  j = 1,.  . . , d - 1)such that a(i)  = +1 (-1) 
on the boundary if z > 0 ( S O ) .  Then, as N, M + CO, the magnetisation will be +m* at the 
centre of the upper half box, and -m* for the lower one. These two regions will be 
separated by a long contour or sheet which intersects the surface of A at z = 4. When 
d = 2, Gallavotti (1972) proved that for T < Tc<< Tc(2)  (where T c ( d )  is the d-dimen- 
sional critical temperature), with probability one as N+w, the long contour is at least as 
far as M S  from any finite region, with 6 <$. Thus we may reasonably infer that 
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( ~ ( 0 ,  P ) ) ~  = 0 for all finite p .  This result has recently been supplemented for d = 2 by 
Higuchi (1979) and Aizenman (1979, 1980) who proved that all ( U ( A ) ) ~  are trans; 
lationally invariant for all T < Tc(2). 

On the other hand, for d = 3, Dobrushin (1972) showed that the magnetisation 
( ~ ( 0 ,  p ) ) -  varies with p ,  the region of validity for this being extended to 0 < T < Tc(2) by 
van Beijeren (1975). This bound has a simple motivation in the Burton-Cabrera- 
Frank theory (1951): the interface behaves like a d = 2 Ising model with no field, since 
that arising in mean field theory from above and below cancels out by symmetry. 
Indeed, Weeks et a1 (1973) suggested that at a temperature T R  not discernibly different 
from Tc(2), there is a phase transition to an intermediate phase on (TR, Tc(3))  which has 
a strongly fluctuating interface and ( ~ ( 0 ,  P ) ) ~  = 0 for all IpI <CO.  The fluid region of the 
phase diagram is therefore likely to lie within the fluctuating region, certainly so near 
criticality. Thus for both d = 2 and d = 3 we have results totally at variance with 
theories based on free energy functionals, and, moreover, with everyday experience. 
Furthermore, the existence of a phase transition entails, in accordance with accepted 
phenomenology, an additional correlation length which diverges at TR; this is contrary 
to accepted dogma, since there should be concomitant singularities in other quantities, 
which are not observed. In the remainder of this section we summarise some relevant 
exact results recently obtained for d = 2 which form a basis for the Monte Carlo 
simulations which we report in this paper. 

For d = 2 we have the exact result (Abraham and Reed 1974, 1976) 

6 4, 

s 4, 
lim lim ( ( ~ ( 0 ,  CUM'))N,M = a = '  2 ,  (6) 

M + w  N-tm 

where 

2 "  
J, o 

@ ( x )  =- exp(-u2) du (7) 

and 

b = (sinh y(0))'" (8) 

cosh y ( w )  = (cosh 2K)2/sinh 2K -cos w, 

with y (0 )  the real positive root of 

(9) 
a celebrated formula due to Onsager (1944). This result indicates where the interface is 
likely to be found and ties in nicely with Gallavotti's theorem. It is interesting to recall 
that y ( 0 )  is the surface tension in units of kT  (Onsager 1944). Let us define for n 2 0 

Then the RMS width of the interface, denoted 12, is 

i2 = a o ( ~ ( 2 ) / ~ ( ~ ) ) ' / 2  (11) 

where a. is the side length of a lattice cell, typically the range of the potential. 
Combining (6), (7) and (8) it is evident that 

12 - ao(M/y(0))1'2. (12) 
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This formula also occurs in the Buff et a1 (1965) theory developed for d = 2. Its 
numerical consequences are striking. Recall that 6 - l / -y(O)  in lattice units. If 
M/y(O) - lo8, which is typical, then 12 - lop4 cm. Such an effect would not be observ- 
able without optical leverage. Thus doubts as to the completeness of the statistical 
mechanical theory based on everyday observation cannot be sustained. 

A modified form of the above model, which we shall now describe, has a roughening 
transition at a temperature which can be made as close as one wishes to T,(2). Thus it 
may be experimentally observable. 

Consider the strips A = {(x, z ) ,  0 =z x 6 N + 1, -m < z < m} with boundary condi- 
t i o n s a ( N + l , z ) = + l , a ( O , z ) = - l  if - S S z S S , + l  if /zI>S. Thisproducesasingle 
long contour. Let the horizontal bond strength between spins in columns 0 and 1, 
normally J, be replaced by aJ with 0 < a < 1. The long contour thus experiences an 
attraction to the line x = i which conflicts with the maximisation of entropy in establish- 
ing equilibrium. The phase diagram is shown in figure 1 (Abraham 1980). In the 
fluctuating region the profile obeys 

-m*, s 4, 
lim lim ( ~ ( c Y s ’ ,  o))= S =’ 2 ,  (13) 

S > t ,  
s-m N+m 

where b is given by (8) and 

a 

Figure 1. Phase diagram for roughening transition: plot of a,  against T or C, against A. 

This result, originally obtained when a = 1 (Abraham and Issigoni 1979), is independent 
o f a  in the fluctuating region. Also, on the scale of the spacing 

s + m  lim N + w  lim ( a ( p ,  0)) = -m+(p) (15) 

where m+(p) is the profile which obtains when a(0,  x) = a(N + 1, x )  = +l for all x. The 
decay here is on a length scale of the bulk correlation length 6 = l / -y (O) .  

In the region of the phase diagram with the contour bound, we have 

lim lim ( a ( p ,  0)) = F ( p ,  a, T)m+(x)  (16) 
s - m  N- tm 



Planar Ising model roughening transition 2063 

where F(0,  a, T )  = -1, F(m, a, T )  = 1 and the length scale in F is l/y(iuo), where y ( w )  
is given by (9) and 

c o s h u o = $ ( B + l / B ) + l = $ ( w + l / w )  (17) 
with 

and 
2K w = e  (cosh 2K -cosh 2aK)lsinh 2K. 

The aim of this paper is to simulate this system using the Monte Carlo method. The 
existence of an exact solution for some aspects of the problem has enabled us to handle 
with confidence a problem with up to three length scales. We obtain static pair 
correlation functions in both regions, giving evidence of anomolously long range in the 
actual region of transition, which is localised due to the finite value of s. Our simulation 
uses an associated Markov chain with Glauber dynamics (Glauber 1963); we can thus 
obtain equilibrium autocorrelation functions and evidence of long-time tails in the 
interface region. In the next section we shall describe our method and results. The 
paper will conclude with a discussion. 

2. Simulation results 

We report simulations of a 65 X 65 nearest-neighbour square lattice Ising model. The 
lattice is wrapped on a cylinder so that the spins a(i, j )  are periodic in j with period 65. 
The boundary spins a (65 ,  j )  are also coupled to an extra row of fixed + spins with 
coupling constant J, the coupling constant in the bulk of the lattice. The spins at the 
other boundary are also coupled to an extra row of fixed spins, but with coupling 
constant aJ, 0 < a 1. Of these fixed spins, those coupled to a( 1, j )  for a s j s 57 are - 
while the rest are +. The simulations were carried out with zero applied field, although 
an alternative interpretation using (1) is that the surface spins are acted on by fields. For 
convenience we introduce the notation 

9 (20) A = e-2J/kT c = e-2aJ/kT 

The critical value of A is &- 1. We used A = 0.35 throughout; this gives a bulk 
correlation length of about 3, facilitating separation of length scales within the 
limitations of our simulation. The critical value of C for the roughening transition for 
A = 0.35 is C -0.54. We considered two values of C with a rough surface (0.4,0.45) 
and two values of C with a bound surface (0.65, 0.8). 

The simulations were considered as made up of ‘moves’ and ‘time steps’. In a 
‘move’, a spin on the square lattice was chosen randomly and then overturned using the 
Glauber dynamics algorithm (Glauber 1963). That is, if the change in energy on 
overturning a spin was AE, the spin was overturned in the move with probability 

p = [l +exp(AE/kT)]-’. (21) 
If the spin was not overturned, the move consisted of changing nothing. A ‘time step’ 
was composed of 65’ consecutive moves. The system was equilibrated for at least lo4 
time steps for each value of C. A run of 100 time steps was then done to store a history 
of 100 consecutive configurations {a}. Averages of properties of the system were then 
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taken over 2 X lo4 subsequent time steps. The equilibration runs for C = 0.8 and 
C = 0.4 (lo4 and 4 x lo4 time steps, respectively) were started from configurations 
constructed by choosing each spin in turn to be + with probability (1 + m*)/2 and 
otherwise -. The equilibration run for C = 0.65 ( lo4  time steps) was started from the 
final configuration of the averaging run at C = 0.8. The equilibration run at C = 0.45 
( lo4 time steps) was started from the final configuration of the averaging run at C = 0.4. 
The averaging runs of 2 x lo4 time steps consisted of 8.45 x lo' moves. 

To define the correlation functions which we measured, let a(i, j lK) be the state of 
a(i, j )  at the Kth time step of the averaging run. Note that K E (-99,2 x lo4), because 
the averaging run was preceded by 100 time steps. 

Our results fall into three categories. Firstly, we have endeavoured to approximate 
the exact results from theory for the magnetisation profile. In figure 2 we plot 

The sum on K divided by 2 x lo4 is supposed to approximate the canonical equilibrium 
average (2). Our resources did not permit us to obtain data for the limiting procedure in 
(13) and (14). Nevertheless, for C = 0.4 and C = 0.45 we see in figure 2 a remarkable 
agreement with the theoretical function and a significant independence of C there, even 
with such small values of s (number of reversed spins in edge; s = 49 in these 
simulations). The lack of precise agreement with the exact result is presumably due to 
the finite size of s. The exact results do not give any estimate of finite size corrections as 
yet. The contrast with C = 0.65 and C = 0.8 in figure 2 is most striking. In that case, the 
interface is bound to the edge on a length scale which evidently increases as C decreases 

1.0 

- 
'Y 0 - 
E 

-1.c 

t A 
A V 0 + 

V .+  
0 

o +  . + 

.+ 0 A 
V 

0 

0 O ?  
1 I 

V 0 )  10 20 
i 6 

0 . 
6 + . + 

8 @  

Figure 2. Plots of m ( i ) ;  A: C = 0.8; V: C = 0.65; 0: C = 0.45; 0: C = 0.4. +: result of (13). 
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Figure 3. A: C = 0.8; V: C = 0.65; 0: C = 0.45; 0: C = 0.4. ( a )  Plots of g,(30, k ) .  ( b )  
Plots of g1(1, k ) .  

towards its critical value, as expected. This picture is confirmed by typical configura- 
tions plotted in figure 6. The profiles for the larger values of C correspond to regions of 
- spins bound to the fixed - spins with a characteristic length of l/y(ivO), with values 
-4 for C = 0.8, -10 for C = 0.65. For the smaller values of C the surface of the region 
of - spins undergoes large fluctuations on a length scale ( ~ 6 ) ' ' ~  - 12. 
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The use of an average over a strip of five spins perpendicular to the row of fixed 
overturned spins and in the middle of them requires some comment. During the rather 
long equilibration run at C = 0.4, magnetisation profiles 
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Figure 4. ( a )  Plots of gll(30, k ) ;  A: C = 0.8; 0: C = 0.65; 0: C = 0.45; 0: C = 0.4. ( b )  Plots 
of gIi(1, k ) ;  0: C = 0.45; 0: C = 0.4. (c) Plots of gll(i, k ) ;  0: C = 0.45, i = 6; 0: C = 0.4, 
i = 6 ;  W :  C=0.45, i = 9 ;  0: C-0.4, i = 9 .  ( d )  Plots of gll(i, k ) ;  A: C=O.8, i = l ;  0 :  
C-0.65, i=l;+: C=O.8, i = 3 ;  X: C=0.65, i=3.  

were calculated for 1 = 0, 1 , 2 , 3  and 12 with N = lo4. The results were rather 'noisy' for 
1 = 0 and became smoother as 1 increased. However, while the profiles for I = 2 , 3  and 
12 were satisfactorily smooth, only the profile with 1 = 2 stayed close to the 1 = 0 profile. 
The larger values of I gave profiles which apparently reflected the fact that the profile at 
the edges of the row of overturned spins is not the same as that at the centre of this row. 
The choice of 1 = 2 seemed the best compromise between' on the one hand requiring 
smooth data and, on the other, representing the profile at the centre of the row of 
overturned spins. 

In the second category we have equilibrium pair correlation function results; none 
of these can yet be checked against theory. We have calculated 

and 

In figure 3(a),  we plot g1(30, k) with k = 1 , .  . . , 10 for all the values of C. The results 
have no detectable C-dependence, as expected. They show the anticipated rather short 
correlation length 5/2 - 1.6. The results in figure 3(b) for gl(l ,  k) are compatible with 
the profile expression (14). Dependence on C for C = 0.4 and 0.45 is only significant in 
the initial decay to -m (1)m * on a length scale of 5, followed by the passage of k through 
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the interface region to achieve final decay to the value m(1)m". Notice that the correct 
final clustering values are obtained in all cases. 

In figure 4(a) we give gll(30, k )  with k = 1, . . . , 10 for all values of C. The plots are 
identical with those for g,(30, k ) ,  which is a necessary consequence of lattice isotropy. 
Figure 4(b) is a plot of glI(1, k) for C = 0.4 and C = 0.45. The horizontal lines in these 
plots are at a height ~ ( 1 ) ~ .  These functions show a rapid decay within the average 
domain size to m(1)', followed by a much slower decay, presumably ultimately to 
-m(l)' for an infinite system. The necessary finite size of our simulation sample 
imposes a serious constraint here. The function gll(i, k) is explored further in figure 4(c), 
which displays gll(6, k )  and gll(9, k )  for C = 0.4 and C = 0.45: gll(9, k )  decays rapidly to 
its clustering value on a length scale -5, but gll(6, k ) ,  which refers to the typical interface 
region for the value of s used (see figure 2), decays much more slowly. Finally, in figure 
4(d), gll is examined for the bound interface at C = 0.8 and C = 0.65. For C = 0.8, both 
glI(1, k )  and gll(3, k )  decay to m (1)' or m(3)2 on a short length scale up to k = 20. When 
C = 0.65, figure 2 shows that the interface has already broadened in anticipation of the 
roughening transition. There may well be two length scales operating here. 

Our third category of result uses the Markov chain associated with the Ising problem 
in the simulation to generate time-dependent autocorrelation functions. We define 

In figure 5 ( a )  we plot G,(301k) for all values of C. We see that there is an insignificant 
C-dependence. Figure 5(b)  shows G,(llk) for C = 0.4 and C = 0.45. Evidently within 
the domain there is another much longer time scale operating. This is also seen in figure 
5(c) which shows Gt(61k) and G,(lOlk) for C = 0.4 and C = 0.45. 

Finally, we present in figures 6(a) and (b) two representative configurations. Figure 
6(a) shows a(i, jl104) for C = 0.65 and figure 6(b) shows ~ ( i ,  j12 x lo4) for C = 0.45. 
Figure 6(a) shows a few small clusters of - spins bound to the row of fixed - spins. 
Figure 6(b) shows a well developed region of - spins attached to the row of fixed - 
spins. The contour dividing this region from the bulk of the lattice is seen to have 
large-scale spatial fluctuations. 

The use of an equilibration run of lo4 time steps also deserves comment. It was 
found, for the initial states used with C=O.4 and C=O.45, that this length of 
equilibration run gave a magnetisation profile in excellent agreement with (14), so that 
information about the initial configuration had apparently been lost. The profiles 
measured in the subsequent 2 x lo4 time step averaging runs did not differ significantly 
from those resulting from the equilibration runs. 

3. Discussion 

In summary, we have shown that our simulation reproduces with considerable accuracy 
known exact results for the roughening transition in the planar Ising model. We have 
not given any statistical analysis of our results since the usual naive treatment was at first 
quite misleading: stable results were obtained for runs of lo3 time steps which 
nevertheless did not agree with (14). One of the difficulties here is the persistence of 
correlations with time in the interface region. Thus we regard the availability of exact 
results here as highly important. 
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Clearly much further work remains to be done on time-dependent phenomena. For 
instance, what effect does diffusive dynamics have? Are these characterisable meta- 
stable states? The motion of the interface may well have a diffusive character with such 
variables as playing a role. 
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I 
i 

Figure 6. ( a )  Configuration m ( i ,  jl104) for C = 0.65. Overturned (-) spins are represented 
by black squares. Bars on edge represent ends and middle of edge row of fixed overturned 
spins. ( b )  Configuration cr( i ,  j / 2  X lo4) for C = 0.45: markings as for ( a ) .  

The static pair correlation functions show evidence of the anomalous long-range 
decays suggested by Wertheim (1976) and Weeks (1977). Such phenomena occur only 
in the interface ; we use the finite value of s to localise the domain wall effectively. It may 
ultimately prove possible to calculate gll and g, exactly with leading finite-s corrections. 
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